Runge phenomenon

  • 网络龙格现象
Runge phenomenonRunge phenomenon
  1. Polynomial interpolation although the structure is simple and easy to construct , when the number of the interpolation function is higher may be product Runge phenomenon .

    多项式插值虽然结构简单便于构造但是当插值函数次数较高时可能会产生龙格现象。

  2. Traditional interpolation method based on Lagrange interpolation polynomial , but it is numerical unstable . The Runge phenomenon illustrates this problem .

    传统的插值方法基于Lagrange插值多项式,但Lagrange插值具有数值不稳定性,Runge现象就说明了这一问题。

  3. Polynomial interpolation is the basic of the whole numerical approximations , however , the high order interpolation which bring into the Runge phenomenon restricts its applications .

    多项式插值是整个数值逼近的基础,但是高次插值产生的Runge现象限制了它的应用。

  4. To avoid the Runge phenomenon introduced by the use of Lagrange polynomial processing and ensure the accuracy of data processing , data are processed between the measuring points by multi-segmented linear interpolation approach .

    数据处理上采用多测量点间分段线性内插处理方式,避免使用拉格朗日多项式处理引起的Runge现象,保证数据处理的正确性。

  5. This can be generalized to polynomial interpolation , which is sometimes more accurate but suffers from Runge 's phenomenon .

    这可以推广到多项式插值,有时更准确,但患有龙的现象。

  6. In this paper , piecewise low-order interpolation method of two-dimensional and multi-dimensional function is used to determine wind pressure distributions on the whole roof surface . This method can avoid " Runge " phenomenon of high-order interpolation .

    本文利用二元函数和多元函数的分段低次插值方法,求出风压系数分布的插值函数,进而反映整个屋面的风压分布情况,此方法能避免高阶插值方法带来的“龙格”现象;